文章摘要
滑广军,赵德坚,肖颖喆,谢勇.缓冲包装设计方法数学内涵探析[J].包装工程,2013,34(23):64-67.
HUA Guang-jun,ZHAO De-jian,XIAO Ying-zhe,XIE Yong.Discussion and Analysis on Mathematical Connotation of Cushioning Packaging Design Method[J].Packaging Engineering,2013,34(23):64-67.
缓冲包装设计方法数学内涵探析
Discussion and Analysis on Mathematical Connotation of Cushioning Packaging Design Method
投稿时间:2013-10-16  修订日期:2013-12-10
DOI:
中文关键词: 缓冲系数  缓冲设计  不定式方程组
英文关键词: cushioning coefficient  cushioning packaging design  infinitive equation group
基金项目:湖南省教育厅教改基金资助项目(10C258);湖南工业大学教改项目(2013A10)
作者单位
滑广军 湖南工业大学, 株洲412008 
赵德坚 湖南工业大学, 株洲412008 
肖颖喆 湖南工业大学, 株洲412008 
谢勇 湖南工业大学, 株洲412008 
摘要点击次数:
全文下载次数:
中文摘要:
      为便于设计者理解和掌握缓冲系数-最大应力曲线的缓冲设计方法,利用数学方法进行了研究。将材料缓冲系数-最大应力曲线等效为通用函数方程的形式,并与缓冲面积及厚度计算公式一起作为不定式方程组进行分析,从而将基于缓冲系数-最大应力的缓冲设计方法转化为求解不定式方程组的问题。对几种经典的缓冲包装衬垫面积和厚度计算方法进行了分类和诠释。这些典型的缓冲结构面积及厚度设计方法本质上是为求解不定式方程组增加了不同的约束条件,将求解不定式方程组转变为求解适定方程组的问题,有助于设计人员灵活地设计缓冲包装结构。
英文摘要:
      The purpose was to help designers understand the cushioning design methods based on cushioning coefficient-maximum stress curve. The cushioning coefficient-maximum stress curve was equivalent to an infinitive equation. The infinitive equation was composed to infinitive equation group together with the cushioning pad area and thickness formula. By this means, the cushioning pad design methods based on cushioning coefficient-maximum stress curve was converted to the problem of solving infinitive equation group. By this method, the classic cushioning pad area and thickness calculation methods were analyzed and classified. It was concluded that the essence of the classic cushioning design methods is adding a restriction to the infinitive equation group and converting the original infinitive equation group to posed equations.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24869330位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号