谢德红,朱文风,李蕊.基于最优色空间和视觉掩蔽的彩色图像评价算法[J].包装工程,2014,35(21):86-90,112. XIE De-hong,ZHU Wen-feng,LI Rui.Color Quality Assessment Algorithm Based on Optimal Color Space and Visual Masking[J].Packaging Engineering,2014,35(21):86-90,112. |
基于最优色空间和视觉掩蔽的彩色图像评价算法 |
Color Quality Assessment Algorithm Based on Optimal Color Space and Visual Masking |
投稿时间:2014-01-10 修订日期:2014-11-10 |
DOI: |
中文关键词: 彩色图像 质量 评价 色空间 掩蔽效应 |
英文关键词: color image quality assessment color space visual masking |
基金项目:国家级大学生创新创业训练计划项 (201310298043);江苏省高等学校大学生实践创新训练计划重点项目 (20131029843Z) |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 针对当前色差算法在评价彩色图像时未考虑图像中像素之间颜色在视觉上的空间效应, 提出基于最优色空间和视觉掩蔽效应的彩色图像质量评价算法。方法 通过分析色空间通道间的相关性, 选取最优正交、 对立空间作为评价的工作色空间, 在此基础上, 利用色空间各颜色通道的掩蔽函数, 去除图像颜色与颜色之间在视觉上的空间关联性, 最后构建图像颜色差别公式, 以评价彩色图像质量。结果 在验证实验中, 通过利用 Pearson 相关系数、 Spearman 等级相关系数以及Kendall等级相关系数, 分析各算法评价与图像主观评价之间的关系发现, 该算法评价与主观评价的Pearson 相关系数、 Spearman 等级相关系数和 Kendall 等级相关系数分别可达到 0.3948, 0.5840 和0.4814, 且分别大于现有其他色差算法评价与主观评价的相关系数。结论 该算法评价结果与人眼视觉主观评价相对一致。 |
英文摘要: |
Objective The spatial visual effects of image colors among different pixels are not considered when using the typical color difference formula to assess the quality of color images. Targeting at this problem, a color image quality assessment algorithm based on optimal color space and visual masking effects was presented. Methods In this algorithm, an orthogonal and opponent color space, determined by analyzing correlation coefficient matrices of color spaces, was selected as its optimal working space. Visual masking functions for each channel of the color space were then used to de-correlate the spatial correlation caused by the interplay among colors in human vision. Finally, an image color difference formulae was constructed to assess the quality of color images. Results In the testing experiment, Pearson Correlation Coefficient (PCC), Spearman Rank-Order Correlation Coefficient (SROCC) and Kendall Rank-Order Correlation Coefficient (KROCC) were used to figure out the relationship between the objective assessment and the subjective visual assessment. In relation to the subjective assessment values, the PCC, SROCC and KROCC values of the objective assessment algorithms were 0.3948, 0.5840 and 0.4814, respectively, which were higher than those for other assessment algorithms. Conclusion The final results of the experiment showed that the proposed algorithm was essentially consistent with the subjective visual assessment. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|