文章摘要
李梅,孔令罔.基于FICA的色彩信号宽带多光谱空间研究[J].包装工程,2015,36(9):119-123.
LI Mei,KONG Ling-wang.Color Signal Wide-band Multispectral Space Research Based on FICA[J].Packaging Engineering,2015,36(9):119-123.
基于FICA的色彩信号宽带多光谱空间研究
Color Signal Wide-band Multispectral Space Research Based on FICA
投稿时间:2014-12-08  修订日期:2015-05-10
DOI:
中文关键词: 快速独立成分分析法  宽带多光谱空间  累积空间覆盖率  色差  光谱拟合度
英文关键词: fast independent component analysis  wide-band multi-spectral space  cumulative space covering ratio  color difference  fitting degree of the spectrum
基金项目:运城学院院级科研项目(CY-2013021)
作者单位
李梅 运城学院运城 044000 
孔令罔 武汉大学武汉 430079 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 利用快速独立成分分析法, 实现有效利用色彩光谱信息进行色彩精度复制的关键技术。方法 利用快速独立成分分析法对孟塞尔colormatt光谱数据集进行光谱空间降维, 并利用选用的独立成分进行光谱空间重建; 从累积空间覆盖率和表色精度等方面对该方法进行评价。结果 随着选用独立成分个数的增加, 累积空间覆盖率和表色精度数据逐步增大, 当选用8个独立成分时, 累积空间覆盖率和表色精度逐步处于平稳状态; 根据需求选用5个基矢量对颜色进行准确光谱重建, 最终累积空间覆盖率达到97%, 99.92%的重构光谱拟合度达0.9以上, 100%的样品色差小于0.5。结论 利用快速独立成分分析法进行光谱空间降维, 能够高精度地表示原始光谱空间。
英文摘要:
      The aim of this work was to use fast independent component analysis to achieve effective utilization of the key technology of colour spectrum information reproducing color accuracy. Fast independent component analysis was applied to munsell colormatt spectroscopy data set for dimension reduction of the space, and the chosen independent components were used to reconstruct spectral space, finally this method was evaluated from the two aspects of accumulated space coverage and colorful accuracy. With the increase of the chosen number of independent components, the cumulative spatial coverage and colorful accuracy data increased gradually. When eight independent components were selected, the cumulative space coverage and colorful precision tended to be steady gradually. According to the demand, five base vectors were selected for accurate color spectrum reconstruction, and eventually the cumulative space coverage reached 97%, the fitting degree of 99.92% of the reconstructed spectrum reached 0.9 and above, the color difference of 100% of samples was less than 0.5. Using fast independent component analysis for dimension reduction of the spectral space could achieve high-precision representation of the original spectral space.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24869202位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号