滑广军,廖泽顺,谢勇,莫灿梁.基于Ansys的纸浆模塑模具加热板温度场分析及优化[J].包装工程,2016,37(1):78-82. HUA Guang-jun,LIAO Ze-shun,XIE Yong,MO Can-liang.Analysis and Optimization of Temperature Field in Pulp Molding Mold Heating Plate Based on Ansys[J].Packaging Engineering,2016,37(1):78-82. |
基于Ansys的纸浆模塑模具加热板温度场分析及优化 |
Analysis and Optimization of Temperature Field in Pulp Molding Mold Heating Plate Based on Ansys |
投稿时间:2015-04-21 修订日期:2016-01-10 |
DOI: |
中文关键词: 加热板 孔道 Ansys 温度场 |
英文关键词: heating plate channel Ansys temperature field |
基金项目:国家自然科学基金 (61170101) |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 纸浆模塑热压成型模具的加热板工作面温度分布状况,是影响产品成型质量的主要原因之一。对原加热板的孔道结构进行优化, 以得到工作面温度分布更均匀的优化方案。方法 用Ansys软件进行温度场仿真分析, 研究了加热板孔道结构对加热板工作面温度分布的影响。结果 分析结果表明: 原加热板工作面最大温差达到了11.6 ℃, 优化后加热板工作面最大温差为2.2 ℃, 优化后较优化前加热板工作面最大温差降低了81%。结论 研究为纸浆模塑加热板孔道结构提供了可行的优化方案。 |
英文摘要: |
The distribution of surface temperature in heating plate of hot-pressed pulp molding mold is one of the main factors affecting the quality of the pulp molding products. In this paper, the channel structure of the original heating plate was optimized to obtain a more optimized scheme, with more uniform surface temperature distribution. During the experiment, Ansys software was used for temperature field simulation analysis, and the influence of the channel structure of heating plate on its surface temperature distribution was studied. The analysis result showed that the maximum range of temperature difference in the original heating plate surface could reach 11.6 ℃ , while the maximum range of surface temperature difference in the optimized heating plate was 2.2 ℃. After optimiation, the surface temperature difference was decreased by 81% compared with that of the original plate. The research provides a feasible optimization scheme for channel structure of the heating plate in pulp molding. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|