文章摘要
杜刚,张善文.相似度距离耦合角度径向变换的图像配准算法[J].包装工程,2016,37(19):173-180.
DU Gang,ZHANG Shan-wen.Image Registration Algorithm Based on Similarity Distance Coupled with Radial Angle Transformation[J].Packaging Engineering,2016,37(19):173-180.
相似度距离耦合角度径向变换的图像配准算法
Image Registration Algorithm Based on Similarity Distance Coupled with Radial Angle Transformation
投稿时间:2016-03-24  修订日期:2016-10-10
DOI:
中文关键词: 图像配准  角度径向变换  最优相似度距离  配准误差  随机样本一致策略  相位信息
英文关键词: image registration  radial angle transformation  optimal similarity distance  registration error  consistent strategy of random samples  phase information
基金项目:国家自然科学基金(61473237);陕西省自然科学基础研究计划(2014JM2-6096);陕西省教育厅自然科学研究项目(2013JK887)
作者单位
杜刚 西京学院长安 710123 
张善文 西京学院长安 710123 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 为了解决当前图像配准算法因利用l1距离或l2距离相似度测量手段来完成图像特征点匹配,使其忽略了相位信息,难以有效消除高斯噪声的影响,使其配准精度与效率不佳不足的问题。方法 提出最优相似度距离耦合角度径向变换的抗噪图像配准算法。首先引入角度径向变换,以降低算法复杂度,快速提取图像的特征点。然后联合图像的幅度和相位信息,基于欧式距离测度,定义最优相似度距离测量模型,通过求解其全局最小值,对特征点完成匹配,提高算法的抗噪性能。最后将图像分割为内点与外点,择取6个内点,通过计算其变换矩的几何配准误差,改进随机样本一致策略,对匹配进行提纯,消除误配。结果 仿真实验结果显示,与当前基于l1距离或l2距离相似度测量的图像配准技术相比,该算法具有更强的抗高斯噪声性能和更高的匹配精度,且算法时耗最短。结论 所提算法能够精确完成图像特征配准。
英文摘要:
      The work aims to solve the defects such as low registration accuracy and poor efficiency of current image registration algorithm due to the application of l1 distance or l2 distance similarity measuring means to complete image feature matching, causing it to ignore the phase information and making it hard to effectively eliminate the effect of Gaussian noise. The anti-noise image registration algorithm based on optimal similarity distance coupled with radial angle transformation was proposed. Firstly, image feature point was fast extracted by introducing the radial angle transformation to reduce the complexity of the algorithm; then the optimal similarity distance measurement model was defined by combining the image amplitude and phase information and based on the measurement of Euclidean distance to improve the anti-noise performance to complete the feature points matching through solving its global minimum. Finally, the image was divided into inner points and outer points. 6 inner points were selected to improve the consistent strategies of random samples to purify the matching and eliminate the mismatching through the calculation of their geometrical registration errors of transformation matrix. Simulation results showed that: this algorithm had stronger anti Gaussian noise performance and higher matching accuracy, as well as the shortest consumption of time compared with the current image registration techniques measured based on l1 distance or l2 distance similarity. The algorithm mentioned can accurately com-plete the image feature registration.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24858973位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号