文章摘要
李晨昊,谢德红,陈梦舟.基于凸包优化的盲源分离在图像去噪中的研究[J].包装工程,2016,37(21):204-210.
LI Chen-hao,XIE De-hong,CHEN Meng-zhou.Image Denoising with Blind Source Separation Based on Convex Hull Optimization[J].Packaging Engineering,2016,37(21):204-210.
基于凸包优化的盲源分离在图像去噪中的研究
Image Denoising with Blind Source Separation Based on Convex Hull Optimization
投稿时间:2016-04-08  修订日期:2016-11-10
DOI:
中文关键词: 凸包优化  盲分离  高斯噪声  脉冲噪声
英文关键词: convex hull optimization  blind source separation  Gaussian noise  impulse noise
基金项目:江苏省制浆造纸科学与技术重点实验室开放基金(201526);南京林业大学大学生创新训练计划(2015sjcx174);江苏高校优势学科建设工程(164030857)
作者单位
李晨昊 南京林业大学 江苏省纸浆造纸科学与技术重点实验室南京 210037 
谢德红 南京林业大学 江苏省纸浆造纸科学与技术重点实验室南京 210037 
陈梦舟 南京林业大学 江苏省纸浆造纸科学与技术重点实验室南京 210037 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 针对高斯-脉冲混合噪声图像中难以有效去除大量奇异点或离群数据的问题,提出一种基于凸包优化的盲源分离方法来去除图像中的混合噪声。方法 该方法把混合噪声和原图均看作未知的源信号,依据噪声图像中混合噪声与原图内容的加性关系建立盲源分离的模型,并利用凸包优化的方法构建源信号(凸包极点)的仿射包,然后通过最小化仿射包到凸包(噪声图像)上的投影误差,求解混合噪声和原图2个源信号,实现去噪混合噪声、复原原图的目的。结果 实验结果发现,无论高斯-脉冲混合噪声强弱,该方法去噪复原后的峰值信噪比和平均结构相似性分别在39.9129 dB和0.9以上。结论 由实验数据证实该方法可有效地从盲源分离的角度去除图像中高斯-脉冲混合噪声、复原原始图像。
英文摘要:
      The work aims to propose image denoising method with blind source separation based on convex hull optimization in consideration of the problem of removing Gaussian white noise and impulse noise from a image simultaneously for a lot of outliers in the noisy image. This proposed method treated the mixed noise and the clean image as two source signals of a noisy image. A model of blind source separation was built according to additive relationship between the mixed noise and the clean image in the noisy image. The convex hull optimization method was adopted to construct the affine hull of source signals (those were the extreme points of convex hull). Then, a clean image was separated from two noisy images by minimizing the projection error of the affine hull onto convex hull (the noisy image) for the purpose of removing mixed noise and recovering the clean image. According to the experimental results, peak signal-to-noise ratio (PSNR) value and mean structure similarity index measurements (MSSIM) value of the denoised images in the proposed method were respectively over 39.9129 dB and 0.9 even if the Gaussian and impulse mixed noise was very strong. Results of denoising experiments show that the proposed method has good performance in removing the Gaussian and impulse mixed noise and recovering the clean image from the perspective of blind source separation.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24863967位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号