文章摘要
巩雪.超高压作用下扇贝连接界面结构变化实验研究[J].包装工程,2021,42(21):19-24.
GONG Xue.Experimental Study on Structural Change of Scallop Shell Connecting Interface under Ultra High Pressure[J].Packaging Engineering,2021,42(21):19-24.
超高压作用下扇贝连接界面结构变化实验研究
Experimental Study on Structural Change of Scallop Shell Connecting Interface under Ultra High Pressure
投稿时间:2021-04-21  
DOI:10.19554/j.cnki.1001-3563.2021.21.003
中文关键词: 扇贝  超高压  贝壳  结构变化  微观结构
英文关键词: scallop  ultra-high pressure  shell  structural change  micro-structure
基金项目:“十三五”国家科技支撑计划(2016YFD0400301)
作者单位
巩雪 哈尔滨商业大学哈尔滨 150028 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 为探究超高压的脱壳机理,对超高压作用下扇贝连接界面贝壳的结构变化进行研究,旨在为超高压技术的工业化生产提供基础理论。方法 利用傅里叶变换红外光谱和扫描电镜,对不同超高压力作用下扇贝界面贝壳的矿物质和蛋白质结构进行分析。结果 扇贝壳中的矿物质结构在超高压作用下比较稳定,贝壳中和贝壳内表面的有机质结构变化比较显著,红外光谱各特征峰的强度也出现了明显差异,有机质二级结构中的α-螺旋、β-折叠、β-转角和无规则卷曲结构的含量也有所不同,特别是在200 MPa的压力作用下,α-螺旋结构的含量达到最低(质量分数为20.12%)、β-折叠结构的含量达到了最高(质量分数为41.81%),这使得有机质的弹性减小,改变了扇贝壳与闭壳肌连接处的界面状态;通过分析不同压力作用下扇贝内表面微观结构,发现在扇贝内表面存在的有机质膜发生连续性改变,引起连接界面的应力分布不均匀,降低了连接界面强度,导致扇贝闭壳肌与贝壳的连接界面失效。结论 通过研究超高压作用下扇贝壳连接界面的结构变化,为进一步明晰超高压的脱壳机理和作用机理提供一定的研究基础。
英文摘要:
      The work aims to explore the shelling mechanism of ultra-high pressure and study the structural changes of scallop shell connecting interface under ultra-high pressure to provide basic theory for industrial production of ultra-high pressure technology. The structure of mineral and organic matter in scallop shell under different ultra-high pressure was analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that the mineral structure in scallop shell was relatively stable under ultra-high pressure, but the structure of organic matter in shell and inner surface changed significantly. The intensity of each characteristic peak of infrared spectrum also had obvious difference. The contents of α-helix, β-fold, β-turn and irregular curl in the secondary structure of organic matter were also different. Especially under 200 MPa, the content of α-helix was the lowest, 20.12%; and the content of β-fold was the highest, 41.81%. This made the elasticity of organic matter decrease and changed the status of interface between shell and adductor muscle. Analysis on micro-structure of inner surface of scallop shell under different pressure showed that the continuity of the organic plasma membrane on the inner surface of scallop was changed, which made the stress distribution of the interface uneven and reduced the strength of the connecting interface, resulting in the failure of the interface between the adductor muscle and the shell. The study of the structural changes of scallop shell interface under ultra-high pressure can provide a certain research basis for further clarifying the shelling mechanism and even the action mechanism of ultra-high pressure.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24867810位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号