孙刘杰,樊景星.非对称关键点注意力结构的交互式图像分割方法[J].包装工程,2022,43(11):292-301. SUN Liu-jie,FAN Jing-xing.Interactive Image Segmentation with Asymmetric Key Points Attention[J].Packaging Engineering,2022,43(11):292-301. |
非对称关键点注意力结构的交互式图像分割方法 |
Interactive Image Segmentation with Asymmetric Key Points Attention |
|
DOI:10.19554/j.cnki.1001-3563.2022.11.037 |
中文关键词: 图像分割 神经网络 关键点信息 人机交互 |
英文关键词: image segmentation neural network key points human-computer interaction |
基金项目: |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 人机交互信息在交互式图像分割过程中具有重要意义,为了提高交互信息的使用效率,文中提出一种优化方法。方法 提出一种非对称注意力结构,将交互信息通过该结构融合到交互式图像分割算法(IOG)的特征提取网络中。该算法能够进一步强化关键点信息对图像分割所起到的引导作用。结果 非对称注意力结构能够在不增加交互成本的条件下,在PASCAL数据集上达到92.2%的准确率,比目前最好的IOG分割算法提高了0.2%。仅在小样本PASCAL数据集上训练时,文中算法具有更明显的优势,比现有最好的IOG算法的准确率提高了1.3%。结论 通过中文的非对称注意力结构,能够在不增加交互成本的同时提升网络的分割精度。 |
英文摘要: |
In the process of interactive image segmentation, human-computer interaction plays an important role. For higher efficiency of human-computer interaction, this paper describes a structure of asymmetric key points attention, which can integrate human-computer interaction into the feature extraction network of interactive object segmentation with inside-outside guidance (IOG), based on guidance reinforcement of IOG for image segmentation of key points. This structure enhanced the accuracy to 92.2% without increasing the cost of interaction on PASCAL, 0.2% higher IOG (current best segmentation algorithm). While only training on PASCAL, the accuracy of this structure was obviously 1.3% higher than IOG. Under the assistance of the structure of asymmetric key points attention, the accuracy of segmentation can be improved without increasing the cost of interaction. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |