文章摘要
田陆川,姜红,陈坦之,高永照,李春雷,屈音璇,刘峰.差分拉曼光谱结合XRF对塑料药瓶的多元分类研究[J].包装工程,2022,43(17):59-65.
TIAN Lu-chuan,JIANG Hong,CHEN Tan-zhi,GAO Yong-zhao,LI Chun-lei,QU Yin-xuan,LIU Feng.Multivariate Classification of Plastic Medicine Bottles by Differential RamanSpectroscopy Combined with XRF[J].Packaging Engineering,2022,43(17):59-65.
差分拉曼光谱结合XRF对塑料药瓶的多元分类研究
Multivariate Classification of Plastic Medicine Bottles by Differential RamanSpectroscopy Combined with XRF
  
DOI:10.19554/j.cnki.1001-3563.2022.17.008
中文关键词: 差分拉曼光谱  X射线荧光光谱  药瓶  多层感知器神经网络  Fisher判别分析  系统聚类  主成分分析
英文关键词: differential Raman spectroscopy  X-ray fluorescence spectroscopy  medicine bottle  multilayer perceptron neural network  Fisher discriminant analysis  systematic clustering  principal component analysis
基金项目:国家重点研发项目(2018YFC1602701);中央高校基本科研业务费项目(2020JKF502)
作者单位
田陆川 中国人民公安大学 侦查学院北京 100038 
姜红 中国人民公安大学 侦查学院北京 100038
中国人民公安大学 食品药品与环境犯罪研究中心北京 100038 
陈坦之 中国人民公安大学 侦查学院北京 100038 
高永照 中国人民公安大学 侦查学院北京 100038 
李春雷 中国人民公安大学 食品药品与环境犯罪研究中心北京 100038 
屈音璇 中国人民公安大学 侦查学院北京 100038 
刘峰 南京简智仪器设备有限公司南京 210049 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 构建一种药瓶的分类及预测模型。方法 利用差分拉曼光谱和X射线荧光光谱对54个不同品牌和产地的塑料药瓶进行分析检验。结果 得到了54个样品的差分拉曼谱图及Cl、Ca、Ti、Fe、Zn等元素的含量。利用主成分分析对差分拉曼光谱数据进行降维,再利用系统聚类将降维后的数据分为8类,并以此为依据建立判别分析模型,最终判别模型经交叉验证可知准确率达到90.7%,多层感知器的分类准确率为100%,分类效果较好。结论 差分拉曼光谱可以根据谱图中的特征峰推断样品的分子结构,并且可以根据峰位对样品进行分类,并建立分析模型,X射线荧光光谱可以通过各元素的种类和含量的不同对样品进行区分,实现组内的细化。差分拉曼光谱和X射线荧光光谱可以分别从有机和无机的角度对药瓶进行分类,在分析上可以优势互补,可为公安机关实际办案探索出一种新的光谱联用角度和方法。
英文摘要:
      The work aims to construct a classification and prediction model of medicine bottles. Differential Raman spectroscopy and X-ray fluorescence spectroscopy were used to analyze and test 54 plastic medicine bottles from different brands and producing areas. The differential Raman spectra of 54 samples and the content of chlorine, calcium, titanium, iron and zinc were obtained. The principal component analysis was used to reduce the dimension of the differential Raman spectrum data, and then the system clustering was used to divide the reduced dimension data into 8 categories. Based on this, the discriminant analysis model was established. The final discriminant model was verified by cross validation, and the accuracy was 90.7%, and the classification accuracy of the multi-layer perceptron was 100%. The classification effect was good. The differential Raman spectrum can infer the molecular structure of the sample according to the characteristic peaks in the spectrum, and the samples can be classified and analyzed according to the peak position. The X-ray fluorescence spectrum can distinguish the samples according to the types and contents of various elements, so as to realize the refinement in the group. Differential Raman spectroscopy and X-ray fluorescence spectroscopy can classify medicine bottles from organic and inorganic perspectives respectively. They complement each other in analysis. They can be used to explore a new angle and method of spectral combination for the actual handling of cases by public security organs.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24862526位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号