文章摘要
陈东亮,师素双,房立庆,蔡猛,师占群.基于机器视觉的金属丝网缺陷识别方法[J].包装工程,2023,44(3):164-171.
CHEN Dong-liang,SHI Su-shuang,FANG Li-qing,CAI Meng,SHI Zhan-qun.Defect Recognition Method of Wire Mesh Based on Machine Vision[J].Packaging Engineering,2023,44(3):164-171.
基于机器视觉的金属丝网缺陷识别方法
Defect Recognition Method of Wire Mesh Based on Machine Vision
  
DOI:10.19554/j.cnki.1001-3563.2023.03.020
中文关键词: 缺陷检测  深度学习  EfficientNetV2  金属丝网  迁移学习
英文关键词: defect detection  deep learning  EfficientNetV2  wire mesh  transfer learning
基金项目:
作者单位
陈东亮 河北工业大学 机械工程学院天津 300130 
师素双 河北工业大学 机械工程学院天津 300130 
房立庆 河北工业大学 机械工程学院天津 300130 
蔡猛 中国民航大学 机械工程学院天津 300300 
师占群 河北工业大学 机械工程学院天津 300130 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提升金属丝网的检测效率与检测精度。方法 提出一种应用于金属丝网表面缺陷识别的EfficientNetV2改进网络,首先更改了网络的骨干结构,在特征提取模块前后分别引入通道拆分与通道转换等操作,以增大网络容量,提高特征利用率;其次重新设计网络的分类器,通过对提取的高级语义信息进行逐层分步压缩,以减小特征损失,提高分类精度;最后搭建图像采集系统,构造金属丝网缺陷数据集。结果 实验结果表明,文中改进的网络模型在数据集上的准确率、精确度和特异度分别达到99.43%、99.42%和99.88%,图像识别耗时为27.5 ms,增强了缺陷识别效果。结论 该方法具有较高的准确率,在金属丝网缺陷检测上具有较好的实用性,也可为其他类似产品的缺陷检测提供参考。
英文摘要:
      The work aims to improve the detection efficiency and accuracy of wire mesh. An improved network EfficientNetV2 for wire mesh surface defect recognition was proposed. Firstly, the backbone structure of the network was changed, and operations such as channel splitting and channel conversion were introduced before and after the feature extraction module to increase network capacity and improve feature utilization. Secondly, the classifier of the network was redesigned, and the extracted high-level semantic information was compressed layer by layer to reduce the feature loss and improve the classification accuracy. Finally, an image acquisition system was built to construct a wire mesh defect data set. According to the experimental results, the accuracy, precision and specificity of the improved network model on the data set were 99.43%, 99.42% and 99.88% respectively, and the image recognition time was 27.5 ms, which enhanced the defect recognition effect. The method has high accuracy and good practicability in wire mesh defect detection, and can also provide reference for defect detection of other similar products.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24854261位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号