文章摘要
王鸿宇,吴岳忠,陈玲姣,陈茜.动态场景下基于YOLOv5和几何约束的视觉SLAM算法[J].包装工程,2024,45(3):208-217.
WANG Hongyu,WU Yuezhong,CHEN Lingjiao,CHEN Xi.Visual SLAM Algorithm Based on YOLOv5 and Geometric Constraints in Dynamic Scenes[J].Packaging Engineering,2024,45(3):208-217.
动态场景下基于YOLOv5和几何约束的视觉SLAM算法
Visual SLAM Algorithm Based on YOLOv5 and Geometric Constraints in Dynamic Scenes
投稿时间:2023-10-25  
DOI:10.19554/j.cnki.1001-3563.2024.03.024
中文关键词: 视觉SLAM  动态场景  目标检测  光流法  对极几何约束
英文关键词: visual SLAM  dynamic scene  target detection  optical flow method  epipolar geometric constraints
基金项目:国家重点研发计划项目(2022YFE010300);湖南省自然科学基金项目(2021JJ50050,2022JJ50051,2023JJ30217);湖南省教育厅科学研究项目(22A0422,21A0350,21B0547,21C0430);中国高校产学研创新基金重点项目(2022IT052);湖南省研究生创新基金项目(CX20220835)
作者单位
王鸿宇 湖南工业大学 轨道交通学院湖南 株洲 412007 
吴岳忠 湖南工业大学 轨道交通学院湖南 株洲 412007
湖南省智能信息感知及处理技术重点实验室湖南 株洲 412007 
陈玲姣 湖南工业大学 轨道交通学院湖南 株洲 412007 
陈茜 湖南工业大学 轨道交通学院湖南 株洲 412007 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法。方法 首先,以YOLOv5s为基础,将原有的CSPDarknet主干网络替换成轻量级的MobileNetV3网络,可以减少参数、加快运行速度,同时与ORB-SLAM2系统相结合,在提取ORB特征点的同时获取语义信息,并剔除先验的动态特征点。然后,结合光流法和对极几何约束对可能残存的动态特征点进一步剔除。最后,仅用静态特征点对相机位姿进行估计。结果 在TUM数据集上的实验结果表明,与ORB-SLAM2相比,在高动态序列下的ATE和RPE都减少了90%以上,与DS-SLAM、Dyna-SLAM同类型系统相比,在保证定位精度和鲁棒性的同时,跟踪线程中处理一帧图像平均只需28.26 ms。结论 该算法能够有效降低动态物体对实时SLAM过程造成的干扰,为实现更加智能化、自动化的包装流程提供了可能。
英文摘要:
      When mobile intelligence agent performs the complex task of Simultaneous Localization And Mapping (SLAM), the interference of dynamic objects will weaken the correlation between feature points and the degradation of the system's localization accuracy. In this regard, the work aims to propose a visual SLAM algorithm based on YOLOv5 and geometric constraints for indoor dynamic scenes. First, based on YOLOv5s, the original CSPDarknet backbone network was replaced by a lightweight MobileNetV3 network, which could reduce parameters and speed up operation, and at the same time, it was combined with the ORB-SLAM2 system to obtain semantic information and eliminate a priori dynamic feature points while extracting ORB feature points. Then, the possible residual dynamic feature points were further culled by combining the optical flow method and epipolar geometric constraints. Finally, only static feature points were used for camera position estimation. Experimental results on the TUM data set showed that both ATE and RPE were reduced by more than 90% on average under high dynamic sequences compared with ORB-SLAM2, and the processing of one frame in the tracking thread took only 28.26 ms on average compared with the same type of systems of DS-SLAM and Dyna-SLAM, while guaranteeing localization accuracy and robustness. The algorithm can effectively reduce the interference caused by dynamic objects to the real-time SLAM process. It provides a possibility for more intelligent and automatic packaging process.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24859827位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号