文章摘要
杨棋驭,胡晓光,姜红,何璟淳,田红丽,刘晓静,韩玮.基于双曲面弯晶技术的X射线荧光光谱仪对塑料快递袋检验分类[J].包装工程,2024,45(13):247-252.
YANG Qiyu,HU Xiaoguang,JIANG Hong,HE Jingchun,TIAN Hongli,LIU Xiaojing,HAN Wei.Classification of Plastic Express Bags by X-ray Fluorescence Spectrometer Based on Johansson-type Doubly Curved Crystal[J].Packaging Engineering,2024,45(13):247-252.
基于双曲面弯晶技术的X射线荧光光谱仪对塑料快递袋检验分类
Classification of Plastic Express Bags by X-ray Fluorescence Spectrometer Based on Johansson-type Doubly Curved Crystal
投稿时间:2024-01-17  
DOI:10.19554/j.cnki.1001-3563.2024.13.028
中文关键词: 塑料快递袋  红外光谱  X射线荧光光谱法  梯度提升树
英文关键词: plastic express bags  infrared spectrometry  X-ray fluorescence spectrometer  gradient boosting decision tree
基金项目:中国人民公安大学刑事科学技术双一流创新研究专项(2023SYL06)
作者单位
杨棋驭 中国人民公安大学 侦查学院北京 100038 
胡晓光 中国人民公安大学 侦查学院北京 100038 
姜红 万子健检测技术北京有限公司司法鉴定中心北京 100141 
何璟淳 中国人民公安大学 侦查学院北京 100038 
田红丽 北京安科慧生科技有限公司北京 101102 
刘晓静 北京安科慧生科技有限公司北京 101102 
韩玮 北京安科慧生科技有限公司北京 101102 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 解决部分塑料快递袋轻元素占比高、元素种类少、常规X射线荧光光谱难以有效区分的缺点。方法 利用红外光谱和基于双曲面弯晶技术的X射线荧光光谱仪对7个快递公司,不同地区、不同批次共36个样品进行成分分析和元素含量分析。首先,利用红外光谱对样品基体进行区分,然后再根据元素含量进行组内细分,最后将分类结果作为定类带入梯度提升树模型中,并进行模型稳健性验证。结果 样品被红外光谱分为2组,再根据钛元素与硫元素含量将2组细分为5类,梯度提升树模型经过参数优选后准确率为94.2%。结论 该方法能够根据样品基体与填料的差异性快速分类并预测所属种类,填补常规X射线荧光光谱检验的空缺,为未知塑料快递袋溯源分类提供了一种新的侦查思路和技术手段。
英文摘要:
      The work aims to address the shortcomings of some plastic express bags, including high proportion of light elements, limited types of elements, and difficulties in effective differentiation by conventional X-ray fluorescence spectrometer. Infrared spectrometry and X-ray fluorescence spectrometer based on Johansson-type Doubly Curved Crystal bending technology were combined to analyze the composition and element content of 36 samples from 7 express delivery companies in different regions and batches. Firstly, infrared spectrometry was used to distinguish the sample matrix, followed by further subgrouping based on element content. Finally, the classification results were incorporated into gradient boosting decision tree model for validation of model robustness. The samples were divided into two groups by infrared spectrometry and further subdivided into five categories based on titanium and sulfur content. After optimization of the model parameters, the accuracy of the gradient boosting decision tree model reached 94.2%. This method can quickly classify and predict the types of samples based on differences in the matrix and fillers, filling the gap in conventional X-ray fluorescence spectrometer inspection, and providing a new investigation idea and technical means for tracing and classifying unknown plastic express bags.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24866789位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号