周雅丽,黄少云,周振基,邹洋,贺嘉,李鑫.可降解塑料包装袋土埋降解性能研究[J].包装工程,2025,(1):49-56. ZHOU Yali,HUANG Shaoyun,ZHOU Zhenji,ZOU Yang,HE Jia,LI Xin.Degradation Performance of Biodegradable Plastic Packaging Bags Buried in Soil[J].Packaging Engineering,2025,(1):49-56. |
可降解塑料包装袋土埋降解性能研究 |
Degradation Performance of Biodegradable Plastic Packaging Bags Buried in Soil |
投稿时间:2024-10-30 |
DOI:10.19554/j.cnki.1001-3563.2025.01.006 |
中文关键词: 可降解塑料 土埋降解性能 分子结构 热稳定性 |
英文关键词: degradable plastics burial degradation performance molecular structure thermal stability. |
基金项目:湖北省教育厅科研计划(Q20214305,B2021267);荆楚理工学院校级科研项目(YY202103);校级大创项目(KC2022025);广东省基础与应用基础研究项目(2121A1515110930);东莞市科技特派员项目(20221800500502);荆楚理工学院博士启动金项目(YY202459);广东省基础与应用基础研究基金联合基金(2021A1515110930);东莞职业技术学院科研创新基金项目(KYCX202404) |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 塑料污染已成为全球环境污染的一个突出问题,对新型绿色生物可降解塑料的需求不断增加。为评估不同生物可降解材料在土壤环境中的降解性能,并探讨加速材料降解的主要因素。方法 设计一系列土埋实验,模拟材料在自然环境中的土壤条件。实验使用淀粉+聚乙烯(PE)、聚乳酸(PLA)+聚己二酸-对苯二甲酸丁二酯(PBAT)+淀粉、聚对苯二甲酸丁二酯(PBT)+聚乳酸(PLA)+玉米基材以及高密度聚乙烯(HDPE)+细胞外基质(ECM)降解母料,并以聚乙烯(PE)作为对照组。通过改变埋土深度、土壤湿度和土壤pH值等实验条件,结合傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、热力学分析等技术,探究不同材料的降解速率、降解性能差异以及材料分子结构可能的变化。结果 研究表明,样品的结晶度显著影响其降解性能。尤其是PLA+PBAT+淀粉样品,由于分子间作用力增强和热触发运动性能的降低,在实验中表现出较低的最大失重速率和较高的失重峰温,表现出最高的热稳定性和最佳的降解性能。结论 样品表现出良好的热稳定性和降解性,为生物可降解塑料的开发和应用提供了科学依据,有助于解决塑料污染问题。 |
英文摘要: |
Plastic pollution is a major global environmental concern, resulting in increased demands for innovative, green, biodegradable plastics. The work aims to evaluate the degradation behavior of different biodegradable materials in soil environments and to identify key factors influencing their degradation processes. A series of soil burial experiments were conducted to replicate natural soil conditions accurately. The tested materials consisted of starch + polyethylene (PE), polylactic acid (PLA) + poly(butylene adipate-co-terephthalate) (PBAT) + starch, poly(butylene terephthalate) (PBT) + PLA + corn-based substrate, and high-density polyethylene (HDPE) + ECM degradation masterbatch, while PE was used as the control. This study investigated degradation rates, variations in degradation performance, and changes in molecular structure by altering experimental conditions such as burial depth, soil moisture, and soil pH in combination with Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermodynamic analysis. The results demonstrated that the crystallinity of the samples significantly influenced their degradation performance. Specifically, the PLA + PBAT + starch sample showed lower maximum mass loss rates and higher peak mass loss temperature, attributed to enhanced intermolecular forces and reduced thermally-induced mobility, leading to improved thermal stability and optimal degradation performance. In conclusion, the samples show optimal thermal stability and degradation performance, providing a robust scientific basis for the development and application of biodegradable plastics, supporting efforts to mitigate plastic pollution. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|