黄兆岭,黄彩萍,冯时,于江龙,陈永雍,韦启钦,胡鹏飞.基于金属微柱阵列T/R组件的多热源散热网络结构优化设计分析[J].包装工程,2025,(1):293-304. HUANG Zhaoling,HUANG Caiping,FENG Shi,YU Jianglong,CHEN Yongyong,WEI Qiqin,HU Pengfei.Design and Analysis of Heat Dissipation Network Structure Optimization forMultiple Heat Sources of T/R Module Based on Metal MicropillarArray[J].Packaging Engineering,2025,(1):293-304. |
基于金属微柱阵列T/R组件的多热源散热网络结构优化设计分析 |
Design and Analysis of Heat Dissipation Network Structure Optimization forMultiple Heat Sources of T/R Module Based on Metal MicropillarArray |
投稿时间:2024-06-25 |
DOI:10.19554/j.cnki.1001-3563.2025.01.034 |
中文关键词: 微通道 T/R散热网络 传热性能 液冷散热 |
英文关键词: microchannels T/R heat dissipation network heat transfer liquid cooling and heat dissipation |
基金项目:中国博士后科学基金项目(2024M750802);贵州省科技计划(黔科合支撑〔2024〕一般070);贵州省科技计划(黔科合支撑〔2022〕一般165);贵阳市科技计划(筑科合同〔2022〕3-8号) |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 基于多层生瓷片低温烧结而成的新型LTCC陶瓷基板,以提高T/R组件液冷散热性能为目的,设计一种基于金属微柱阵列结构的微通道散热器,形成热源、梯度界面层、内嵌微柱阵列以及液冷流道的散热网络结构,解决T/R组件中高密度芯片阵列的高效热管控问题。方法 采用分步有限元仿真方法模拟微通道散热器的传热传质过程,通过参数控制变量法研究金属微柱阵列的尺寸大小以及梯度界面层对T/R组件中散热性能的影响,优化金属微柱阵列结构尺寸和银铜合金梯度界面层涂层结构。结果 基于多热源散热网络理论优化的金属导热微柱阵列结构,能使液冷散热微通道界面热源最高温度从126.96 ℃降至58.89 ℃;基于整齐排列策略的微柱阵列结构,温度降低至52.478 ℃,降幅为10.88%;金属导热微柱阵列银SSP铜合金梯度界面层温升降低到53.211 ℃,热应变降低1.3%,热应力降低幅度为3.7%。结论 通过多热源散热网络结构优化设计分析,金属导热微柱阵列微通道散热网络能力得到极大的提高,T/R组件的换热性能更优。 |
英文摘要: |
Based on the novel LTCC porcelain substrate formed through the low-temperature sintering of multi-layer green porcelain chips, the work aims to design a microchannel heat sink based on the structure of metal micropillar array to improve liquid cooling and heat dissipation performance of T/R modules and form a heat dissipation network structure of heat source, gradient interface layer, embedded micropillar array and liquid cooling channel to solve the problem of efficient thermal control of high-density chip arrays in T/R modules. The step-by-step finite element analysis method was used to simulate the heat and mass transfer process. The parameter controlled variable method was used to study the size of metal micropillar array and the effect of gradient interface layer on heat dissipation performance. The size of micropillar array structure and the gradient interface layer coating structure were optimized. The micropillar array structure optimized based on the theory of multiple heat sources heat dissipation network could reduce the maximum temperature of the interface heat source of liquid cooled microchannel from 126.96 ℃ to 58.89 ℃. The size parameters of the micropillar array structure based on the neat arrangement strategy were reduced to 52.478 ℃, a decrease of 10.88%. The temperature rise of gradient interface layer of the metal thermal conductive micropillar array silver copper alloy decreased to 53.211 ℃, the thermal strain decreased by 1.3%, and the thermal stress decreased by 3.7%. Through the optimization design and analysis of the multiple heat sources dissipation network structure, the microchannel heat dissipation network capability of metal thermal conductive micropillar array has been greatly improved, and the heat exchange performance of the T/R modules is better. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |