文章摘要
朱玥琪,邢志凯,潘帅,朱玉洁,徐爱琴.考虑模糊排放量的包装废弃物收运路径优化[J].包装工程,2025,(3):221-228.
ZHU Yueqi,XING Zhikai,PAN Shuai,ZHU Yujie,XU Aiqin.Optimization of Packaging Waste Collection Routes Considering Fuzzy Emission[J].Packaging Engineering,2025,(3):221-228.
考虑模糊排放量的包装废弃物收运路径优化
Optimization of Packaging Waste Collection Routes Considering Fuzzy Emission
投稿时间:2024-10-08  
DOI:10.19554/j.cnki.1001-3563.2025.03.026
中文关键词: 废弃物收运  模糊排放量  模糊可信性理论  自适应大邻域搜索算法  路径优化
英文关键词: packaging waste collection  fuzzy emission  fuzzy credibility theory  adaptive large neighborhood search algorithm  route optimization
基金项目:国家自然科学基金(62203468)
作者单位
朱玥琪 郑州大学 信息管理学院郑州 450001
郑州市数据科学研究中心郑州 450001 
邢志凯 郑州大学 信息管理学院郑州 450001
郑州市数据科学研究中心郑州 450001 
潘帅 北京交通大学 交通运输学院北京 100044 
朱玉洁 郑州大学 信息管理学院郑州 450001
郑州市数据科学研究中心郑州 450001 
徐爱琴 郑州大学 信息管理学院郑州 450001
郑州市数据科学研究中心郑州 450001 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 为探索包装废弃物排放量不确定性对收运路径的影响,提高收运作业质量,本文研究了考虑模糊排放量的包装废弃物多转运中心收运路径问题。方法 首先,基于模糊可信性理论,引入三角模糊数刻画收集点废弃物排放量,构建以最小收运里程为目标函数、含决策者主观偏好约束的废弃物多转运中心收运路径优化模型。其次,设计了包含12种邻域准则的自适应大邻域搜索(Adaptive Large Neighborhood Search,ALNS)算法。最后,算例部分比较了确定排放量与模糊排放量下的不同废弃物收运方案,并利用多种智能优化算法求解,同时对决策者主观偏好值进行了灵敏度分析。结果 考虑模糊排放量的废弃物收运里程比确定排放量收运里程多262.34 km,ALNS算法求解性能优于蚁群优化算法(Ant Colony Optimization,ACO)等3种算法,决策者最佳主观偏好值是0.6。结论 本研究能有效应对不确定排放量的挑战,为相关领域提供理论支持和参考依据。
英文摘要:
      The work aims to investigate the multi-depot packaging waste vehicle routing problem considering fuzzy emission to study the impact of uncertain packaging waste generation on collection routes and improve the quality of collection operations. First, based on the fuzzy credibility theory, triangular fuzzy numbers were introduced to represent waste generation at collection points, and an optimization model was constructed with the objective of minimizing collection mileage while incorporating the decision maker's subjective preference constraints. Secondly, an Adaptive Large Neighborhood Search (ALNS) algorithm with 12 neighborhood criteria was designed. Finally, in the case study, different waste collection schemes under both deterministic and fuzzy emission conditions were compared, employing various intelligent optimization algorithms and conducting sensitivity analysis on the decision maker's subjective preference values. The collection mileage considering fuzzy emission was 262.34 km longer than that under deterministic demand. The ALNS algorithm outperformed Ant Colony Optimization (ACO) and three other algorithms in terms of solution performance, with the optimal subjective preference value for the decision maker being 0.6. This study effectively addresses the challenges posed by uncertain emissions, providing theoretical support and reference for related fields.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26038489位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号